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Abstract— Reinforcement Learning (RL) often requires large
number of environment interactions to generalize to unseen
in-distribution tasks, particularly when policy initialization is
suboptimal. Existing meta-RL and transformer-based methods
adapt to unseen tasks with few demonstrations but usually
require training on many tasks (usually 85% of tasks in
task distribution). To address this challenge, we propose a
novel framework that leverages adversarial hypernetworks to
generate strong policy initializations on unseen tasks, enabling
rapid adaptation with minimal interactions, even when pre-
trained on as minimum as 30% of tasks. We demonstrate the
effectiveness of our approach on MuJoCo continuous control
tasks, showcasing strong zero-shot policy initialization and
rapid adaptation on unseen tasks. Additionally, we demonstrate
that our framework can be extended to Multi-Task RL (MTRL)
setting, where it outperforms existing hypernetwork based
methods on manipulation tasks from MetaWorld benchmark.
Through rigorous experimentation, we show that our frame-
work outperforms the prior competitive baselines from in-
context RL and meta RL on zero-shot transfer and enables
efficient adaptation to unseen in-distribution tasks.

Project page: https://GenHypernetworks.github.io/

I. INTRODUCTION

Robots deployed in factories and particularly in domestic
environments such as houses are expected to perform wide
variety of tasks and variations in tasks. Each of these tasks
may vary in reward functions, robot-world interaction model
or both, and its required to adapt to these variations in the
tasks efficiently. Developing a framework that can adapt to
tasks unseen during training time, preferably zero-shot and
achieve optimal performance with minimal fine-tuning is
essential, especially in the environments where unexpected
changes may occur.

Existing approaches on efficient adaptation to unseen
tasks can be broadly classified into two catgories. The first
category includes meta-reinforcement learning (meta-RL)
methods [1]–[3] which take an optimization based approach,
where a meta-policy is trained to enable rapid adaptation to
unseen tasks with minimal gradient updates to meta policy.
The second category focuses on architectural innovations,
such as those proposed in [4], [5]. Our work falls into
the latter category, using hypernetwork-based architectural
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design to enable efficient adaptation with minimal online in-
teractions. Hypernetworks are neural networks that generate
the weights for another network for efficient adaptation to
downstream tasks by conditioning them on task-specific con-
text. While the prior hypernetwork-based approaches mainly
focus on zero-shot generalization, they often require large
number of training tasks and are prone to overfitting. This
can lead to performance degradation on majority of unseen
tasks when trained on limited number of tasks. Additionally,
these methods overlook importance of efficient fine-tuning
for adapting to unseen tasks.

Fig. 1: GenHyper uses adversarial hypernetworks to generate strong
policy initializations for unseen tasks by conditioning on task-
specific information (e.g., velocity in Half-Cheetah), enabling rapid
adaptation with minimal interactions.

To overcome these limitations, we propose GenHyper, a
two-stage pipeline designed for efficient policy adaptation.
In the first stage, we train a Generative Adversarial Network
(HypLatent) to learn the space of policy weights for a set of
tasks, effectively mapping Markov Decision Process (MDP)
parameters to policy weights. At the inference time, we can
sample from HypLatent by conditioning on MDP parameters
to generate policy weights as shown in Figure 1. We show
that these predictions can already achieve good zero-shot
transfer across unseen in-distribution tasks. In the second
stage, we aim to enhance the performance further using
Reinforcement Learning based fine-tuning with minimal in-
teractions. Specifically, in our implementation, we use Soft
Actor-Critic (SAC) [6], wherein we fine-tune both the actor
(initialized through HypLatent) and critic network (initialized
randomly) using TD regularized fine-tuning. Our fine-tuned
performance outperforms prior state-of-the-art transformer
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and hypernetwork-based methods, even when the HypLatent
has been trained on policies from a limited number of prior
related tasks.

To summarize, our key contributions are:
1) We propose GenHyper, a Generative hypernetwork

based framework for efficient adaptation to unseen in-
distribution tasks.

2) Through extensive experiments on MuJoCo continuous
control tasks, we demonstrate that GenHyper effec-
tively generalizes to unseen tasks, even when trained
on a limited number of related tasks. Additionally,
we show that our initialization on unseen tasks allows
for sample-efficient fine-tuning to achieve near-optimal
reward with minimal online interactions.

3) Our experiments on MetaWorld show that GenHyper
can also be applied to multi-task reinforcement learn-
ing, surpassing existing hypernetwork-based methods
in performance.

II. PRELIMINARIES:

A. Problem Formulation:

We consider an agent interacting with the environment that
can perform various tasks T = {τ1, τ2, . . . , τN} ∼ P(τ)
where P(τ) is the task distribution and each task τi in
T is modeled as MDP Mi = (S,A, µ0, Ri, Pi, γ) where
S is the state space, A is the action space, µ0 is the
initial state distribution, and γ is the discount factor. The
reward function Ri is parameterized by reward parameters
(e.g., target velocity, movement direction of the agent) and
the transition dynamics Pi are parameterized by physical
parameters (e.g., torso length, height of the agent).

In this setting, a set of training tasks Ttrain = {τi}Ni=1

are given from the task distribution P(τ) and for each task
τi, we have access to the expert data samples or policy.
We specifically consider an offline setting similar to offline
meta-RL [7], [8] where the learning algorithm has access to
the data and is not allowed to interact with the environment
during training. However, in contrast to the offline meta-RL
setting, we make use of expert policies (SAC [6]) instead
of replay buffer of transitions for each task τi. During the
fine-tuning phase, an unseen task τtest from the same task
distribution P(τ) is sampled and the goal is to learn a
hypernetwork that can generalize or give the return close to
best possible return on any τtest with minimal interactions
during the fine-tuning phase. We condition our framework on
the MDP parametersMparams

i = (Ri, Pi) , which encompass
both reward parameters and dynamics parameters to generate
policy parameters. These MDP parameters - Mparams

i fully
characterize the task variations in our experimental setting.
This contrasts with offline meta-RL, where the policy must
infer the test task from few-shot demonstrations and adapt.

III. RELATED WORKS

Meta Reinforcement Learning: Efficient policy adapta-
tion to unseen tasks has been a key focus in meta-RL. Goal
of meta-RL is to learn a meta policy such that it can achieve
optimal policy on new unseen in-distribution task with few

gradient updates. Prior approaches, such as MAML [1], learn
a meta-policy by iterating over a task-specific inner loop
for adaptation and an outer loop for updating the meta-
policy parameters. However, this process is computationally
expensive due to the reliance on second-order gradients.
Several extensions have been proposed to improve efficiency
and scalability such as [2], [3].

Multi-task Reinforcement Learning: Multi Task rein-
forcement learning (MTRL) is a paradigm which aims to
learn a single policy that can perform multiple tasks. Natural
way to solve MTRL is to have shared parameters which
captures the common representations such as skills or the
objects being manipulated among various tasks [9], [10].
Sharing the parameters across various tasks can lead to
conflicts in gradients if the tasks are not aligned [11], [12].
This can lead to under performance on certain tasks. Over the
years, many works have tackled this challenge by developing
methods that manipulate task-specific gradients to enable
efficient learning across multiple tasks [13]–[16], and is still
an active area of research. On the other hand, CARE [16]
proposes learning diverse representations—skills, behaviors,
or objects through a mixture of encoders, combined using
attention mechanism based on context such as language.
MOORE [17] further enhances representation diversity with
Gram-Schmidt orthogonalization. PACO [18] learns a policy
subspace where task-specific policies are composed by inter-
polating the learned parameters. However, scaling to many
tasks increases the learnable parameters.

Hypernetworks in Reinforcement-Learning Hypernet-
works [19] have gained increasing attention over the years
for their soft parameter sharing capabilities and have been
applied across diverse domains [20]–[22] but are relatively
less explored in the context of Reinforcement learning
[5], [23]–[25]. Hypernetworks generate the weights for a
target network, enabling it to adapt to specific tasks or
contexts. This capability can be used to generate weights
for the related tasks just by conditioning on task-specific
information. Recent works, such as [5], [23], [25], [26],
have demonstrated the potential of hypernetworks for ef-
ficient adaptation and multi-task learning. Leveraging their
soft weight-sharing property, we aim to further explore the
potential of hypernetworks in zero-shot generalization and
efficient fine-tuning to unseen tasks, even when trained on
limited number of tasks.

IV. PROPOSED METHOD

We propose a two-stage pipeline for efficient policy adap-
tation. At the first stage, which is the pretraining phase,
we propose HypLatent (Fig.2(b)), an adversarial generative
hypernetwork based on Adversarial autoencoder [27]. Hy-
pLatent takes the MDP parameters of a task as input and
outputs diverse latent policy parameters (Ẑ) specific to that
task as shown in the architecture Figure 2. In the second
stage, we fine-tune the actor generated by HypLatent and
critic initialized randomly and update them through online
interactions using SAC by gradually increasing the actor’s
learning rate to allow the critic to adapt effectively.



In our framework, only Part (b) of the architecture is
used for zero-shot generalization to unseen tasks, whereas
Parts (a), (b), and (c) are used in the Multi-Task RL setting,
as shown in Figure 3. We describe the extension of our
framework to the Multi-Task RL setting later in Section V.
A. Stage 1: HypLatent Training for Policy Generation

We propose an end-to-end training framework for sam-
pling diverse latent policy representations conditioned on the
MDP parameters. HypLatent consists of 2 key components
as shown in Figure 2.

Encoder and Decoder: Our architecture for the encoder
and decoder is inspired by Make-An-Agent (MAA) [23].
Encoder Eϕ takes policy parameters X from trained expert
policies and maps them to a latent representation Z. The
decoder Dθ reconstructs the original policy parameters from
Z, ensuring that the learned latent space effectively captures
task-specific policy distributions. The reconstruction loss is
defined as:

Lrecon(Xi, Dθ(Eϕ(X
i))) =

1

M

M∑
i=1

(Dθ)(Eϕ(X
i))−Xi)2

(1)

where M is the number of training samples. The encoder
output Z serves as the input to the generative model.

Generative Model: To generate diverse policies, we use
a latent generative adversarial network conditioned on MDP
parametersMparams

i = (Ri, Pi), which correspond to velocity
for the Cheetah-Vel task and direction for the Ant-Dir task
as shown in Figure 1. This conditioning differs in the Multi-
Task RL setting, which we discuss in detail in Section V.
The generator Gζ takes as inputMparams

i and a random noise
vector n, and outputs a synthetic latent policy representation
Ẑ, i.e Ẑ = Gζ(Mparams

i , n) and the discriminator Fµ dis-
tinguishes real latent representations Z from generated ones
Ẑ. Essentially, Fµ tries to predict whether the generated Ẑ
belong to real latent policy parameter manifold, i.e pZ =
Fµ(Ẑ). For training generator Gζ we minimize the objective
function Vζ below,

Vζ(Gζ , Fµ) = ∇ζ
1

N

N∑
i=1

log
(
1− Fµ(Ẑ

i)
)
+

λLrecon(Xi, Dθ(Gζ(Mparams
i , n))) (2)

where Lrecon(Xi, Dθ(Gζ(Mparams
i , n))) is the reconstruction

loss between the input policy parameters Xi and the gener-
ated (reconstructed) output policy parameters Dθ(Gζ(Ẑ)),
and λ is a weighting factor. Here, we train decoder Dθ

together with generator Gζ .
And, maximize the objective Vµ for training discriminator

Fµ using following equation,

Vµ(Gζ , Fµ) = ∇µ
1

N

N∑
i=1

[log
(
Fµ(Z

i)
)
+

log
(
1− Fµ(Ẑ

i)
)
] (3)

Algorithm 1 Training HypLatent

Require: Expert policies {Xi}, MDP parametersMparams
i =

(Ri, Pi), learning rates ηG, ηF
1: Initialize generator Gζ , discriminator Fµ, auxiliary net-

work Q
2: for n = 1 to N epochs do
3: for each Mparams

i do
4: n ∼ N (0, I), Ẑi = Gζ(Mparams

i , n)
5: Vµ = logFµ(Xi) + log(1− Fµ(X̂i))
6: µ← µ+ ηF∇µVµ
7: Vζ = log(1− Fµ(X̂i))
8: ζ ← ζ − ηG∇ζVζ

9: Lreg = λreg

(
Q(Fµ(X̂i))−Mparams

i

)2

10: Q← Q− ηF∇QLreg
11: end for
12: end for

Note that encoder Eϕ is updated together with discrim-
inator. For further grounding the generated latent Ẑ, we
regularize the generator and discriminator by reconstructing
the inputMparams

i back from the discriminator auxiliary head
Q. We do this by minimizing Lreg in Equation (4).

Lreg =
λreg
N

N∑
i=1

(Q(Fµ(Ẑi))−Mparams
i )2 (4)

The training procedure is outlined in Algorithm 1,

B. Stage 2: TD-regularized Fine-tuning

After training HypLatent, the generator can now produce
diverse latent policies conditioned on the MDP parameters
of unseen tasks, offering strong initialization for new tasks.
Our goal is to efficiently fine-tune these policies to optimal
performance with minimal online interactions.

Overestimation of Q values: During online finetuning,
we randomly initialize the critic network and finetune both
actor and critic simualtanously using SAC update rule.
However, the actor’s performance degrades a lot initially
due to distribution shift, a challenge commonly addressed in
offline-to-online adaptation methods such as [28]. This issue
arises because the critic is not initially well-aligned with the
actor. To address this, we start with a lower learning rate
for the actor, allowing the critic to adapt, and then gradually
increase the actor’s learning rate from 3× 10−6 to 3× 10−4

as training progresses. This stabilizes training.
The critic objective remains unchanged during fine-tuning,

but we introduce an additional TD regularization loss term
to optimize the actor, in cases of Q-value overestimation.

JQ(θ) = E(s,a,r,s′)∼D

[
1

2
(Qθ(s, a)− y)2

]
,

y = r + γ(1− d)
(
min
i=1,2

Qθ′(s′, a′)− α log πϕ(a
′|s′)

)
,

θ ← θ − λQ∇θJQ(θ). (5)



Fig. 2: Architecture: The figure in a section (a) consists of an Autoencoder which learns to map policy parameters to latent space. Section
(b) shows HypLatent architecture in which there is a Generator Gζ and a Discriminator Fµ, objective of a generator is to learn latent
policy parameter similar to the Autoencoder′s encoder output, given a behaviour embedding τe and noise n ∼ N(0, I), discriminator
assesses whether the samples generated by the generator belong to the true latent policy parameter distribution, also there is a auxillary
network Q which reconstructs the trajectory embedding given the output features of the discriminator, refer IV-A for in detail explanation.
We also show HypFormer in the section (c) where we use the trained generator to produce diverse latent policy parameters. For a given
behavior embedding τe, multiple noise samples n1, n2, n3 ∼ N(0, I) are used to generate multiple latent policy parameters. These are
then processed by HypFormer, which predicts the ground truth latent policy parameters using the latent head and residue head. For a
detailed explanation, see Section V.

Fig. 3: Framework Overview. In zero-shot transfer experiments,
only Part (b) of the architecture is used for direct policy generation
from HypLatent, enabling zero-shot transfer to unseen tasks. In
the Multi-Task RL setting, Parts (a), (b), and (c) are utilized as
described in Section V.

where y is the TD target, r is the reward, and s′ is the
next state, while employing the standard practice of using
two Q-functions to mitigate overestimation bias. The actor
is updated to maximize the conservative Q-value while
incorporating TD regularization as shown in the Figure 4:

LTD =
1

2
δ2, where δ = r +Qθ′(s′, a′)−Qθ(s, a)

Jπ(ϕ) = Es∼D,a∼πϕ
[α log πϕ(a|s)−Qθ(s, a)] + λTDLTD

ϕ← ϕ− λπ∇ϕJπ(ϕ) (6)

where D is the replay buffer, and LTD is the TD regulariza-
tion term that prevents overestimation during fine-tuning. By
integrating TD regularization, we ensure stability in policy
improvement while mitigating value overestimation, leading
to more reliable fine-tuning.

First the policies are compressed to the latent space as
shown in the (Fig.2(a)) and we train HypLatent with latent
policy parameters Z as shown in Figure 3. We can now use
the generator Gζ to generate latent policy parameter Ẑ by
conditioning on task information, which we refer to as the

behavior embedding τe as shown in the Figure 2. The behav-
ior embedding τe is used to capture information about the
task. For MuJoCo tasks, the input to HypLatent is a simple
scalar representing the task variable (e.g., target velocity).
However, in multi-task RL benchmarks like MetaWorld, task
information is more complex and cannot be represented by
a single scalar. Instead, we train a behavior embedding τe to
encode task-specific information.

Fig. 4: TD-regularized fine-tuning process following Hyplatent
generation. The critic is randomly initialized, and both the actor
and critic are fine-tuned jointly, with a gradually increasing actor
learning rate to stabilize training.

V. EXTENSION TO MULTI-TASK RL

A. Training of Behavior embedding

These embedding are used to provide conditional in-
formation to HypLatent, enabling the generation of di-
verse, task-specific policies. This approach is adapted
from MakeAnAgent(MAA) [23]. Consider the trajectory
of N steps, we now define n step trajectory τn :
(s1, a1, a2, a3, ..., sn−2, an−2, an−1, an), and post success
states τ̂ : (sK , sK+1, sK+2, .., sK+M ) which is collected



after the success step K till M fixed steps. The objective
is to maximize the mutual information I(τ̂ ; τn) between
post success states and the n step trajectory. We train
behaviour embedding using contrastive loss defined as shown
in equation (7):

Lbehaviour = − 1

N

N∑
i=1

log
hTi Wvi∑N
j=1 h

T
j Wvj

(7)

where, hi = ϕ(τni ) and vi = ψ(τ̂i) along with learned
similarity weights W between hi and vi which finally forms
behaviour embedding τe = (hi, vi). We encourage readers
to refer to MAA [23] for additional details on training.

B. HypFormer

Using Gζ alone will generate diverse latent policy pa-
rameters, which might not be close to the ground truth
latent policy embedding. This reduces success rate on an
average. HypFormer tackles this by using soft-weighted
aggregation to refine the generated latent policy parameters
toward the expert policy parameters, as detailed below.
In this stage, we use the generator Gζ to generate latent
policy parameters SẐ = (Ẑ1, Ẑ2, Ẑ3, . . . , ẐL) by con-
ditioning it on the behavior embedding τe and sampled
noise (n1, n2, . . . , nL) ∼ N(0, I). SẐ is then input to
HypFormer along with the learnable token Ẑtoken and
the behaviour embedding τe. The learnable token Ẑtoken

functions similarly to the [CLS] token in the Vision Trans-
former [29], where it acts as a global representation of the
input sequence. Now, HypFormer takes the combination
(Ẑtoken, SẐ , τe) as input tokens, applies self-attention to pro-
duce enhanced latent policy parameters for each trajectory
τe. This self-attention helps us to perform soft-weighted
aggregation of latent policy parameters. Applying MSE loss
to align HypFormer predictions with ground truth resulted
in unstable training. To address this, the enhanced tokens
are processed by a shared MLP, which then splits into
two branches: the latent Head and the residue Head. Latent
Head learns to predict ground truth latent policy parameters,
while the residue Head predicts the residue between Latent
Head prediction and ground truth latent policy parameters,
after which residue tokens and predicted policy tokens are
averaged to get per trajectory single residue token ∇i

pred

and a single latent policy parameter token Zi
pred. As we

have ground truth latent policy parameter token Zi
gt along

with the residue token ∇i
gt for each trajectory τ ie, We apply

cosine similarity loss between Zi
gt and Zi

pred.

Lsim =
1

N
.

N∑
i=1

(1−
Zi
pred.Z

i
gt

max(||Zi
pred||2, ||Zi

gt||2, ϵ)
) (8)

Note that Zi
gt = Eθ(X

i
gt), where Xi

gt is the expert SAC pol-
icy of the task corresponding to the behavior embedding τ ie.
For residue token prediction we minimize Lres as follows,

Lres =
1

N

N∑
i=1

(∇i
pred −∇i

gt)
2 (9)

Finally to ensure that residue head and latent head output’s
are consistent with each other consistency loss is applied on
Ẑi
pred = Zi

pred +∇i
pred,

Lc =
1

N

N∑
i=1

(Ẑi
pred − Zi

gt)
2 (10)

So, final objective to minimize is as follows,

LHypFormer = λsimLsim + λresLres + λcLc (11)

The size of L is typically a power of 2; in our case, it is
set to 23 during training. N is the number of trajectories in
the batch while training. λsim, λres, λc are all set to 1e3.

VI. EXPERIMENTAL SETUP

In our experiments, we aim to evaluate and answer the
following: 1.) Does our method zero-shot generalize to
related but unseen tasks which are in-distribution? How does
the quality of zero-shot transfer change when trained on a
smaller set of tasks? 2.) How data efficient is fine-tuning with
hypernetwork-based policy initialization for unseen tasks,
particularly when HypLatent is trained on a limited number
of tasks? 3.) How well does our method perform on the set
of seen tasks in a multi-task RL setting?

A. Environment details

We evaluate zero-shot transfer and fine-tuning capabilities
on two MuJoCo control tasks:
1.) Cheetah-Vel & Ant-Dir: These tasks involve achieving
target velocities in [0, 3] (Cheetah-Vel) or moving in a
goal direction in [0, 2π] (Ant-Dir). For Cheetah-Vel, we
train on 35 tasks with 5 held out for testing, while for
Ant-Dir, we use 45 training tasks with 5 for testing. We
conduct ablations by training the HypLatent on fewer tasks
(Cheetah-Vel: 10, 20, 25; Ant-Dir: 15, 25, 35) to assess
generalization and sample efficiency.

We assess Multi-Task RL (MTRL) performance on the
MetaWorld benchmark [30]:
2.) MetaWorld: MetaWorld is a benchmark suite for robotic
tabletop manipulation, where the Sawyer robotic arm exe-
cutes diverse motions and object interactions. We consider 8
training (seen) tasks as shown in Table II and 8 evaluation
(unseen) tasks as shown in Table IV, assessing GenHyper’s
success rate on seen tasks and its zero-shot performance on
unseen tasks.

B. Dataset collection

For MuJoCo tasks, we collect a dataset of 500 expert
policies and corresponding critics for each training task to
train our hypernetworks for actor and critic. This dataset is
generated by training Soft Actor-Critic (SAC) [6], with the
first policy and critic saved at 500k training steps, followed
by checkpoints recorded every 500 steps thereafter. Hyperpa-
rameters for SAC policies are borrowed from CleanRL [31].

For MetaWorld, once the test success rate reaches 1, we
collect policies every 500 steps, gathering a total of 500 SAC
policies per task.



C. Training Setup

We train the HypLatent using a 1D UNet architecture
[32] for the generator and a 3-layer MLP for the discrim-
inator. For regularization, an auxiliary network consisting
of a 2-layer MLP is used. The noise sample size is set
to 128 for MetaWorld tasks and 4 for Half-Cheetah. The
behavior embedding size is 128 for MetaWorld, while for
Half-Cheetah, the conditioning information is represented by
a single scalar value (velocity).

We utilize a single-layer Transformer [33] encoder without
positional encoding, with a token size of 256 and 128 heads
in the multi-head attention layer.

Fig. 5: Zero-shot rollout of HypLatent trained on only 15 out of
50 tasks, evaluated on unseen task IDs (6, 41) in Ant-dir task of
MuJoCo. Achieved rewards, averaged across 3 seeds, are 480.56
and 437.36, respectively. Direction input to HypLatent is in radians.

D. Baselines

Prompt Decision Transformer (PDT) [4]: Prompt-based
Decision Transformer for offline few-shot RL. We use it as a
baseline to assess our framework’s zero-shot generalization
without additional fine-tuning.

MACAW [7]: A sample efficient offline meta-RL algo-
rithm. We compare our framework’s zero-shot transfer with
MACAW’s online fine-tuning upto 20k iterations as it is a
meta-RL approach.

PEARL [34]: PEARL is an off-policy meta-RL algorithm
that infers task context via variational inference. Similar to
MACAW, we compare our framework’s zero-shot transfer
with its online fine-tuning upto 20k iterations.

VII. RESULTS AND ANALYSES

A. Zero-shot generalization results

We quantitatively evaluate our framework on the Cheetah-
Vel and Ant-dir datasets to demonstrate its effectiveness
in zero-shot generalization to unseen tasks by varying the
reward functions. For Cheetah-Vel, episodic returns are av-
eraged across the test task indices - (2, 7, 15, 23, 26) for 5
different seeds. Similarly for Ant-Dir, returns are averaged
across the test task indices - (6, 17, 23, 30, 41) for 5
different seeds, as shown in Table I. Qualitative results for
Ant-Dir task on two random unseen tasks are shown in the
Figure 5. These results demonstrate that HypLatent enables
strong zero-shot transfer to unseen tasks surpassing the prior
competitive baselines.

TABLE I: Comparing zero-shot transfer of HypLatent to baselines
on Cheetah-Vel and Ant-Dir tasks.

Methods Avg Returns
(Cheetah-Vel)

Avg Returns
(Ant-Dir)

Offline PEARL [34] (Iter. 0) -273.6 -135.3
Offline PEARL [34] (Iter. 20K) -135.3 123.9

MACAW [7] (Iter. 0) -121.6 251.9
MACAW [7] (Iter. 20K) -60.5 376.5

Prompt-DT [4] -34.43 409.81
HypLatent (Ours) (15 training tasks) -40.33 452.32
HypLatent (Ours) (25 training tasks) -37.05 478.45
HypLatent (Ours) (35 training tasks) -34.84 496.65
HypLatent (Ours) (45 training tasks) N/A 505.64

B. Fine-tuning results on unseen tasks

After obtaining policy initializations from HypLatent for
unseen tasks, we finetune those policies as described in
Section IV-B. Figure 6 shows the fine-tuning plots and
reward curves for two unseen tasks in both Ant-Dir and
Cheetah-Vel. Notably, for Ant-Dir, our approach achieves a
reward of 600 within 100k iterations, whereas SAC reaches
400 even after 200k iterations. Similarly, for Cheetah-Vel,
we reach near-optimal rewards within just 50k iterations,
while SAC requires more than 100k iterations to achieve
comparable performance. The shaded regions in the plot
represent the standard deviation across three different seeds.

Fig. 6: Fine-tuning performance on unseen tasks in Ant-Dir and
Cheetah-Vel benchmarks. (N train:x) indicates that HypLatent is
trained on x number of tasks (please zoom in for better clarity)

Figure 6 also shows ablations on HypLatent trained on
15, 25, 35 tasks. Even when HypLatent is trained on only
15 tasks, it achieves competitive zero-shot performance and
efficiently fine-tunes policies on unseen tasks as shown in
the above figure. The initialization from HypLatent trained
on 35 tasks adapts faster to unseen tasks compared to those
trained on 15 and 25 tasks.

C. Multi-Task RL results

For the MetaWorld dataset, the success rate is measured by
the proportion of the task completed given a trajectory which
is applicable to both seen and unseen tasks. Specifically, we
assess our method’s performance in MTRL by evaluating it



on the seen MetaWorld tasks and then testing the zero-shot
generalization capability of the learned representations on the
unseen MetaWorld tasks. We show the comparison of our
method directly with MAA as it is the closest method to our
approach. Our framework GenHyper achieves a 34.3% im-
provement over MAA and GenHyper without HypFormer
outperforms by 15% on MetaWorld seen test tasks. Table III
shows that our top-5 and top-10 generated policies achieve
100% success rate on seen test environments. For more broad
comparison, we have compared against CARE [16], Decision
Transformer DT [35]. Table IV shows the success rate on
completely unseen tasks of MetaWorld.

TABLE II: GenHyper Success Rate(%) on the MetaWorld dataset.
Bold numbers highlights the top achieved success-rate on the task,
while the italics shows the 2nd best achieved success-rate.

MTRL Tasks MAA GenHyper (w/o
HypFormer)

GenHyper (w/
HypFormer)

window-open 33 51 64
door-open 27 35 62

drawer-open 42 40 78
dial-turn 23 36 48

plate-slide 45 66 88
button-press 32 38 58
handle-press 50 62 82
faucet-close 45 77 82

Avg. Success Rate 36 51 70.3

TABLE III: GenHyper Success Rate(%) on MetaWorld dataset.
Bold numbers highlights the top achieved success-rate, while the
italics shows the 2nd best achieved success-rate. Unless explicitly
stated otherwise, such as for top-10 or top-5, the success rate
reported in table below represents the average over 100 policies.

Methods Seen Task Unseen Task
CARE [16] 82.1 58.5

DT [35] 80.3 60.4
MAA [23] 36 16.25

GenHyper w/o HypFormer 51 12.13
GenHyper 70.3 19.8

MAA (top 5) [23] 95.88 88
MAA (top 10) [23] 90.88 77

GenHyper w/o HypFormer (top 10) 100 54.38
GenHyper w HypFormer (top 10) 100 80.63
GenHyper w/o HypFormer (top 5) 100 75.1
GenHyper w HypFormer (top 5) 100 87.5

TABLE IV: Success Rate(%) on unseen tasks of MetaWorld. Bold
numbers highlights the top achieved success-rate on the task, while
the italics shows the 2nd best achieved success-rate.

Zero-Shot RL Tasks MAA GenHyper (w/o
HypFormer)

GenHyper (w/
HypFormer)

drawer-close 55 53 80
handle-press-side 4 6 0
door-lock 13 6 6
window-close 10 0 12
reach-wall 13 6 10
coffee-button 8 3 9
button-press-wall 11 2 14
faucet-open 16 21 27
Avg.Success Rate 16.25 12.13 19.8

D. Ablation Studies

We present design decisions of GenHyper framework in
the context of MetaWorld tasks. We demonstrate the impact
of number of tokens on task performance and provide PCA
analysis to further substantiate our design choices.

a) Varying number of Tokens: We train HypFormer using
8 tokens, which results in the best performance on the seen
MTRL tasks. This is demonstrated in Figure 8, where the
left image with the blue bar graph highlights this setup. As
number of tokens increases, the performance on MTRL tasks
decreases asymptotically due to increase in redundant latent
embeddings which makes it harder to attend to latent policy
embeddings closer to the ground truth embedding Zi

gt.
b) PCA Analysis: We present a PCA analysis on the
latent policy parameters generated by HypLatent and
HypFormer, as illustrated in Figure 7 for three seen tasks
from MetaWorld: ’Button-Press,’ ’Dial-Turn,’ and ’Door-
Open.’ In the 2D PCA plots, the latent policy parameters
predicted by HypFormer are more closely aligned with the
ground truth compared to those generated by HypLatent,
demonstrating the effectiveness of HypFormer.

VIII. CONCLUSION

In this paper, we propose a framework for efficient adapta-
tion to unseen in-distribution tasks by leveraging adversarial
hypernetworks to train a diverse prior over task policies. Our
experiments on MuJoCo control tasks demonstrate that the
framework exhibits strong zero-shot generalization to unseen
tasks even when trained on limited number of tasks and
outperforms prior competitive baselines on zero-shot transfer.
We show that policy initialization from HypLatent enables
sample-efficient fine-tuning on unseen tasks, rapidly achiev-
ing near-optimal reward with minimal online interactions. We
further extend our framework to Multi-task RL setting where
we use a single layer transformer architecture to guide the
policy priors from HypLatent towards expert policy parame-
ters. Our framework outperforms related hypernetwork-based
baselines in Multi-task RL setting.

IX. FUTURE WORK

We currently rely on expert policies during training, mak-
ing it crucial to explore performance when training with
suboptimal policies. Second, minimizing the impact of distri-
bution shift problem in offline to online learning during fine-
tuning remains a key challenge. Another promising future
direction is to apply GenHyper to larger variety of tasks in
the real world setting.
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